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Abstract. We investigate the U = m  Hubbard model on a large class of lattices which are 
line graphs. The most interesting lattices in this class are line graphs of regular bipartite 
lattices with N, sites and coordination number k24. The ground state energy and some 
ground states are given. If  the number of electrons N satisfies N,s N s 2 N , I k - 2 ,  the 
ground state energy is -4111(N.-N). The ground states have no magnetic ordering, they 
are projections of the ground states at U=O onto the subspace of states without doubly 
occupied sites. 

1. Introduction 

The Hubbard model is the simplest interesting model for itinerant electrons. It describes 
electrons moving on a lattice, and it covers the essential properties of itinerant electrons, 
namely the repulsive interaction, the spin and the Fermi statistics. The motion of the 
electrons is described by a hopping process, the interaction is taken to be local. The 
Hubbard model has been used to study many of the interesting problems in condensed 
matter physics. 

Disregarding the solution of the model in one dimension [l], there are only a few 
exact results. Most of them concern the magnetic properties of the model. The well 
known theorem of Nagaoka [Z] with Tasaki's extension [3] states that on a finite lattice 
with N,  lattice sites for hard-core interaction (and by continuity for very strong 
interaction), if the number of electrons is Ne = N , -  1, and if the hopping matrix 
elements are non-negative, the model has a ferromagnetic ground state with a maximal 
spin S= NJ2.  By symmetry this result holds also for non-positive hopping matrix 
elements (this is the usual case) if the lattice is bipartite. On the other hand, other 
exact results show that the spin of the ground state is not maximal in some cases. 
Already Nagaoka [2] pointed out that his theorem is not valid on non-bipartite lattices 
with the zs-a! xgative hcppixg matrix e!eme-ts. Czr?he-.ore, i" many cases :he 
theorem of Nagaoka is not true if Ne< N,-  1 ,  see e.g. Suto [41. In most of these cases 
the ground state is not known. An exception is the recent work of Brandt and Giesekus 
[5]. They gave the ground-state energy and exact ground states of the Hubhard model 
with hard-core repulsion in a density range below half filling on some special decorated 
hypercubic or 'Perovskite-like' lattices. These lattices are in fact line graphs of cubic 
lattices with periodic boundary conditions. One of the periods has to be odd, so that 
the cubic lattice is not bipartite. They obtained non-trivial results if the dimension d 3 3. 

In the present paper we generalize the results of Brandt and Giesekus to a larger 
class of lattices that are line graphs. This larger class includes the line graphs of all 
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bipartite regular lattices with a coordination number or valency k z 4  and of some 
non-bipartite regular lattices with k > 4, especially the line graphs of hypercubic lattices 
with periodic boundary conditions for dimensions d 2 and the lattice ofthe octahedral 
sites of a spinel, which is the line graph of the diamond lattice. We give the ground-state 
energy and some ground states. These ground states have no magnetic order; they are 
paramagnetic. They are projections of the ground states of the system without interac- 
tion onto the subspace without doubly occupied sites. 

For a wide range of density, we proved the existence of ferromagnetic ground states 
on lattices that are line graphs [6,7]. This result is valid for any interaction strength, 
as long as the interaction is repulsive. It holds for negative hopping matrix elements 
if the density is well above half filling or, by symmetry, for positive hopping matrix 
elements and densities well below half filling. We will compare these results with the 
results obtained in the present paper. In  both cases the fact that the lattice is a line 
graph is essential for the construction of the states and the proofs of the results use 
graph-theoretic meinods. 

Our paper will be organized as follows. The next section contains a description of 
the Hubbard model and a discussion of some of its symmetries. Furthermore we give 
some lower bounds of the Hamiltonian of the Hubbard model with hard-core repulsion. 
In section 3 some graph-theoretic notions are introduced. The construction of the 
ground states is shown and some sufficient conditions for the underlying lattices are 

Section 4 contains some concluding remarks. 
presented: We give severa! examp!es of !attires that satisfy onp of thpsp con.li!ions. 

2. The model 

The Hubbard model is defined by the Hamiltonian 

H,= E txpcL,,cw+UE n,,n,_. (2.1) 
X.Y.0 x 

We assume that txy is equal to t (usually negative) if the lattice sites x and y are 
nearest-neighbours, and 0 otherwise. C L ,  and its adjoint c,, are electron creation and 
annihilation operators for electrons with spin U on the lattice site x. They satisfy the 
usual fermion anticommutation relations. n, = &,, n, = n,++ n,_ are occupation 
numbers. U is a positive real number, it describes the magnitude ofthe on-site repulsion 
of the electrons on the vertices. The interaction term represents the Coulomb repulsion 
between electrons on the same site. Due to the Pauli principle it acts only between 
electrons with different spins. The other matrix elements of the Coulomb interaction 
are completely neglected in the model. 

In the following N is the number of electrons and one has N S Z N ,  where N, 
oenores me numoer 01 iariice sires. I ne namiironran conserves me numDer 01 eienrons 
with spin + (-), which we denote by N+ (N-). It commutes with the spin operators 

> ~ ~ ~ & - ~ . , . -  ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ , ~ ~ . ~ . . . ~ ~ . .  -L.rr.-.:,A.~.:.~. 

s+ = E  c:+c,- s- = c:-c,+ S=f (N+-N_)  (2.2) 
x x 

which generate a global SU(2) symmetry. We may choose the eigenstates of H to also 
be eigenstates of 

s*'(s')'+f(s+s-+S-S+). (2.3) 
This operator has the eigenvalues S(S+ 1) and we call S the spin of the eigenstate. 
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With the help of a particle-hole transformation, the model with r c O  may be 
transformed to one with f > O .  Such a transformation may be introduced using the 
operator 

One has immediately 

I P =  1 

IC,, = c;,r 

IC:, = cxJ 

(2.5a) 

(2.5b) 

( 2 . 5 ~ )  

After a particle-hole transformation the sign of the kinetic energy is changed. One 
obtains 

IH&= H L = -  E ~ ~ ~ c ~ ~ c , ~ + U E ~ , + ~ , _ + U ( N , - N ) .  (2.6) 

The last term is a trivial constant, which will be neglected. The particle number is 
transformed from N to N ' = 2 N , - N .  This transformation may be used to enforce 
N 6 N,,  but one has in tum to consider the two cases f < 0 and I > 0. This was already 
mentioned by Nagaoka [2]. 

In the following we will treat only the case U = m and N < N,.  This simply means 
that the interaction term of (2.1) or (2.6) has to vanish; no site is doubly occupied. 
The projector onto the states without doubly occupied sites is 

x7.m x 

P d  = rI ( I  - n,+n,-) (2.7) 

We will now give some lower bounds on H,. Let I,, i = 1 , .  . . , N , ,  be the eigenvalues 
of the matrix T =  ( t x y ) ,  t is t i+ l .  Let Q j ( x )  be the corresponding eigenvectors, which 
we choose to he real. Then 

t,=E t ,@i(X)@dY) .  (2.9) 

Let us introduce the operators 

@:-=E mi(X)crm @im =E @ d X ) C , , .  
I x 

- I'hen ii, may be written as 

H,= Pd 2 ti@:o@irPd 
,r 

or 

H,=-Pd C txycx&bPd 
X.Y.0 

=-PdE tj@joci)loPd. 
io 

These two expressions lead to the following two lower bounds. 

(2.10) 

(2.11) 

(2.12a) 

(2.126) 
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H - 2  t ,N (2.13) 

If, -2fN,( N ,  - N). (2.14) 

The first lower bound is not only valid for U = CO, but for all U > 0. It was used 
to prove the existence of ferromagnetic ground states for the Hamiltonian (2.8) with 
f > 0 on a line graph [6]. The second lower bound is only valid if U = m. It can be 
improved by a factor 4 in the case of a bipartite lattice. In the case of a regular bipartite 
lattice, the improved bound can be used to prove the theorem of Nagaoka. In the 
following we will discuss line graphs. Lattices that are line graphs are not bipartite. 
In this case, the ground-state energy is given by the right-hand side of (2.14) for some 
N, so that the bound (2.14) is best possible. This was used in the construction of 
Brandt and Giesekus [5]. We will make use of it in the following treatment of the 
Hubbard model (2.8) on line graphs with t < O .  

Let us now recall the definition of a line graph (see e.g. [6,8]). First a graph is a 
collection of sites (or vertices) with bonds (or edges) between them. A graph will be 
denoted by G = (V, E), where V is the set of vertices and E is the set of edges. 1 VI 
and IEl denote the numbers of vertices and edges of G, respectively. Each lattice is a 
graph, where we refer to an edge as a line between two nearest-neighboured sites. We 
deal only with connected graphs. A line graph is constructed from a given graph (or 
lattice) by putting new vertices on the edges of the graph and by connecting these new 
vertices with new edges, if the old edges have a vertex in common. A line graph of a 
graph G will be denoted by L ( G ) .  In [6,7] several examples of lattices that are line 
graphs have been discussed. 

Let us now introduce the adjacency matrix A ( G )  = (axy)x,ysv and the incidence 
matrix B ( G )  = (bxe)xsv,eeE of a graph G. axy = 1 if the two vertices are adjacent and 
axy = O  otherwise, b,. is equal to 1 if the vertex x is incident to the edge e and zero 
otherwise. Some of the spectral properties of the adjacency matrix A, = A(L( G ) )  of 
a line graph L ( G )  may be found in [8]. A, is easily constructed if one knows the 
incidence matrix of G. One has 

AL= B(G)'B(G) -21181 (2.15) 

where E' is the transpose of B and I, denotes the n-dimensional unit matrix. Since 
B'B is a positive-semidefinite matrix it follows from (2.15) that each eigenvalue of the 
adjacency matrix A, is greater than or equal to -2. The eigenspace corresponding to 
the eigenvalue -2 is the kernel of B(G) .  The dimension of the kernel of B ( G )  is 
IE( - I VI + 1 if G is bipartite (i.e. if it has two vertex classes, such that there are no 
edges between the vertices of the same class), and is IE( - 1  VI if G is not bipartite (see 
e.g. [6]). This large degeneracy of the lowest eigenvalue has been used to obtain some 
exact, non-trivial results for the Hubbard model using the inequalities (2.13), (2.14). 

3. Eigenstates 

In the following we will discuss the Hamiltonian (2.8) on a line graph L(G)  and we 
will denote the vertices of the line graph by e, e', 1; etc, as the corresponding edges of 
G. We have 

1.1 = faer f < O  (3.1) 
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where ad are the matrix elements of the adjacency matrix (2.15) of the line graph and 
consequently 

f N ,  = -2f. (3.2) 

Let us introduce the multiparticle state 

IW=P, n @:-lo). (3.3) 
--.r 

c , c - 2 ,  

Since 

Pd@:rPd@:r=O (3.4) 

then In) is an eigenstate of H ,  (2.12b) with the eigenvalue -41 f l (N8-N) ,  or 10) 
vanishes. Due to (2.14) and (3.2) In) is a ground state of H ,  if it does not vanish. We 
therefore have to discuss the conditions for In) not to vanish. 

The state In) is the projection of a state Ino), which is a product of two Slater 
determinants, each of the states { @ , ( e ) ,  f, < -21). In,) is the ground state of Hu for 
the same number of electrons. The space spanned by the states {@,(e), f, < -21)  is the 
image of E', it has the dimension I VI - 1 if G is bipartite, I VI if not. 

A rather trivial necessary condition for In) not to vanish is obtained as follows. 
N. = IEl in our case, and In) contains 2(1 VI - 1 )  electrons if G is bipartite or 21 VI 
electrons if not. Consequently, 10) vanishes if G is bipartite and 2(1 VI - 1) > IEl or if 
G is non-bipartite and 21VI>IEI. Below we will show that in  the case of bipartite 
graphs or lattices where each site has the same valency k a 4  this condition is sufficient. 

In the following we will present some sufficient conditions for In) not to vanish. 
In the proof we will always construct a non-vanishing multiparticle state that has a 
non-vanishing overlap with 10). To construct such states, we will need some graph 
theoretic notions. These notions may be found in any standard textbook on graph 
theory, e.g. [9]. The degree or valency d ( x )  of a vertex x is the number edges incident 
to x. If each vertex in G has the same degree k, G is called the regular of degree k 
or k-regular. In the case of regular lattices, the valency is usually called the coordination 
number. In a colouring of the edges of graph, the edges incident to a vertex get distinct 
colours. The edge chromatic number c( G) is the minimal number of colours needed 
to colour the edges of G. A connected graph without any cycle is a tree. A subgraph 
of a graph G = ( V, E)  is defined by a subset of V and a suitable subset of E. A subgraph 
is a spanning subgraph, if its vertex set is V. A spanning tree of G is a spanning 
subgraph of G that is a tree. 

Instead of the basis {@,(e), f ,  < - 2 f } ,  we may use a different basis of the image of 
E'. A basis of this space is given by {b,,, x E V ]  if G is not bipartite and {bxe, x E V\{x,}} 
if G is bipartite, xu being any vertex of G. This may be seen as follows. It is clear that 
these states span the image of E'; we have to show they are linearly independent. If 
G is non-bipartite, the dimension of the image of E' is equal to I VI, and therefore 
{bxe, x E V} is a basis. On the other hand, if G is bipartite, the dimension of the image 
of E' is equal to I VI - 1. In fact, let s, be equal to 1 on one of the two vertex classes 
of the bipartite graph, -1 on the other vertex class. We have 

s,b,, = 0. ( 3 . 5 )  
x 

This is the only linear dependence of the bx., therefore {b,,, X E  V\(xo}} is a set of 
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linearly independent vectors for any xo and thus a basis. With 

bl, = 1 b X d  (3 .6)  

we have up to a normalizing constant 

and 

( 3 . 7 ~ 1 )  

(3 .76)  

This representation is used to formulate the first and the second sufficient condition 
for In) # 0. 

Theorem 1. If G is bipartite and has a connected, k-regular spanning subgraph H, 
k a  4, In) does not vanish and is thus a ground state of the Hamiltonian H, on L(G) .  

Proal: If H is k-regular and bipartite, c ( H )  = k (see e.g. [9, ch V, section 21). This 
means that the edges of H may be coloured with k different colours. Let E;,  i = 1 , .  . . , k, 
be the corresponding edge classes. Each of these classes contains IEl/k = I V1/2 edges. 
Let now E, = E, U (&\{e E E, e incident to xo}), E- = E, U ( En\{e E E, e incident to 
xJ). IE+I = 1E-I = I VI - 1. Then we define 

(3.8) IE+,E-)= n cf, n c 2 0 ) .  

IE,, E-)  contains no doubly occupied site and we have 

r c E +  * = E .  

(nlE,, E - )  # 0. (3 .9)  

Consequently, In) does not vanish. 
Similarly we obtain: 

Theorem2 Let G have a non-bipartite k-regular spanning subgraph H with c ( H )  = k 3 
4. Then In) does not vanish and is a ground state of H, on L(G) .  

Examples of graphs that fall into these classes are k-regular bipartite graphs, k 3 4 ,  
e.g. the square lattice with periodic boundary conditions, all periods being even, and 
the cubic or hypercubic lattices in d 3 3 with periodic boundary conditions. If one of 
the periods is odd the hypercubic lattice is non-bipartite and theorem 2 applies. This 
special case has already been shown by Brandt and Giesekus. The line graph of the 
square lattice is a two-dimensional lattice of tetrahedra, connected at the vertices such 
that each vertex belongs to exactly two tetrahedra. Another example is the diamond 
lattice with periodic boundary conditions (again all periods even), its line graph is the 
lattice of the octahedral sites of a spinel (see e.g. [lo]). It may be viewed as a lattice 
of tetrahedra connected as described above, the centres of the tetrahedra forming the 
diamond lattice. 

There is another sufficient condition for bipartite graphs. 

Theorem 3. Let G be a bipartite graph. If G has two edge-disjoint spanning trees, In) 
does not vanish and is a ground state of H, on L(G).  
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Proof. If G is bipartite, each edge of G may be assumed to be oriented from VI to 
V,, which are the two vertex classes of G. The matrix S = diag(s,) has s, as its diagonal 
entries, all the other entries are vanishing. Let T be a spanning tree of G and let 
e = (x, y )  be an edge of T. Then, for fixed e = (x,  y ) ,  let V, (V,) be the set of vertices 
of T that may be reached from x ( y )  without passing the edge e. Now, let d,(e’)  = 1 
if e’ connects a vertex of V, with a vertex of V, and is oriented from V, to Vy;  
d,(e’)  = -1 if e‘ connects a vertex of V, with a vertex of V, and is oriented from V, 
to V,; d,(e’) = O  otherwise. The set Dr = {de(e’) ,  e is an edge of T} is the basis of the 
so-called cutspace of G (see e.g. [9]). The cutspace is the complement of the kernel 
of SB(G), which is the kernel of B ( G ) .  D,  is therefore a basis of the image of E‘. 
Given two edge-disjoint spanning trees T+ and T_,  we may introduce 

(3.10) d f ,  = X d d f  )cJW e an edge of T,. 
/E E 

Up to a normalizing constant we have 

(3.11) 

On the other hand, let 

IT+, T_) contains no doubly occupied site. Now 

(nj~,, r-)ico. 
Consequently, In) does not vanish. 

(3.13) 

Acorresponding result for non-bipartite graphs is not true. It is possible to construct 
all bipartite graphs with two edge-disjoint spanning trees. First, let us notice that we 
may add an edge to a bipartite graph G such that the new graph is still bipartite. If 
G has two edge-disjoint spanning trees, the same is true for the new graph. Therefore 
it is sufficient to start from minimal graphs with two edge-disjoint spanning trees, If 
an edge is deleted from such a graph, it no longer has two edge-disjoint spanning 
trees. Each minimal graph with two edge-disjoint spanning trees may be obtained from 
the union of two trees that have the same vertex set. On the other hand, given a bipartite 
graph G, the existence of two edge-disjoint spanning trees is not obvious. It may be 
shown that a cubic lattice in dimension d 3 2 with periodic boundary conditions has 
two edge-disjoint spanning trees. But it is not clear whether or not each k-regular, 
bipartite graph (ka4) has two edge-disjoint spanning trees. 

The results obtained so far may be somewhat generalized. Instead of In), we may 
take the state 

InF)=Pd n @ ! * I F )  (3.14) 
W, i ,,<-*, 

where IF) is a state with some electrons in the single-particle states, which are eigenstates 
of T with the eigenvalue -21. In our cases, these states are elements of the kernel of 
B. The kernel of B is called the cycle space of G, in fact, if a given cycle contains the 
edges e , ,  e 2 , ,  . . , e. ( n  even), the vector X(-l)iei is an element of the kernel of E [6] .  
The conditions in the theorems above are such that each edge of G is contained in a 
cycle. Let Eo be the subset of the edges of G not contained in E+ or E- in (3.8) or in 
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T+ or T- in (3.12). We choose IF) as a state made up of single-particle states on cycles 
that contain at least one edge of Eo and different cycles contain different edges of E,. 
As long as the number of electrons is less then (E l ,  such a state IF) exists. 10,) does 
not vanish and is a ground state of H,, if 10) does not vanish. It is clear that IO,) 
contains more electrons than IO). Since the product in (3.14) is a product of singlets, 
the spin of IO,) is the spin of IF), IO) has a spin 0. Let No be the number of electrons 
io IO), N < IEl the number of electrons in IOp). IF) has N - No electrons and may 
have any spin S S f (  N - No).  

4. Conclusions 

We have shown that exact ground states of the Hubbard model with U = 00 and f < 0 
on line graphs may be obtained under several conditions. The most important examples 
of lattices which satisfy these conditions are line graphs of bipartite lattices with valency 
k a 4 .  In this case the ground-state energy is € = - 4 l t l ( N , - N )  if N , > N a N , =  
4 N J k  -2. Unfortunately we were not able to show whether the ground state is unique 
if N =  No,  but it is degenerate if N >  No. We obtained ground states for all spins 
S s f (  N - No).  If k > 4, some of these states have an extensive spin. Nevertheless, due 
to the degeneracy of the ground state, the behaviour of the system is paramagnetic. 

We may contrast the result obtained io this paper with known results for the 
Hubbard model at U =CO and f > 0. In this case, on the same lattices the theorem of 
Nagaoka is valid [ 3 ]  and we have a unique (up to the (2S+l)-fold degeneracy due 
to the spin symmetry) ferromagnetic ground state if N = N,-  1. Furthermore, we have 
a ferromagnetic ground state if N < N ,  = ( k  - 2 ) N J  k - 1. The ferromagnetic ground 
state is unique if N = N ,  [7]. To our knowledge, this is the first case where, for the 
same model but in a different parameter regime, the existence of ferromagnetic and 
paramagnetic ground states has been rigorously proven. Unfortunately nothing is 
known about excited states or about the behaviour at non-zero temperatures. 

It is perhaps interesting to see that for large k, or high space dimension (for a 
review see [ l l ,  12]), where No tends to 0 or N ,  tends to N , ,  the ground-state energy 
and the ground states on the line graphs (of e.g. hypercubic lattices) are determined 
for almost all densities. But in contrast to the usual hypercubic lattices, it is not possible 
to find a scaling of f with some power of k such that the density of states for the 
non-interacting case is well defined and non-trivial. The limit of infinite dimension 
cannot be discussed for line graphs. 
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